Pre-class Warm-up!!!
Would you choose to use Stokes' theorem to do the following problem?

Let F be the vector field

$$
F(x, y, z)=(x+y \wedge 3 z, \sin (x)+z, y) .
$$

Compute the flux of F across the upper unit hemisphere S, that is $\iint_{-} S F \cdot d S$
a. Yes
b. No

Stokes: $\iint_{S} \nabla x G d S=\int_{\partial S} G \cdot d s$
Here F is not $\nabla x G$ pr any G because $\nabla \cdot F=1+0+0=1 \neq 0$
stokes doesn't immediately apply.

Section 8.4: Gauss's Theorem
We learn:

- Gauss's theorem is similar to Green's theorem and Stokes' theorem, except it works one dimension higher.
- How the surface of a solid region must be oriented for Gauss's theorem
- The use of Gauss's theorem in computing the flux of a vector field across a surface.
- The proof looks very like the proof of Green's theorem
- It is also called the Divergence Theorem.

Gauss's Theorem.
Let W be a solid region of $R \wedge 3$ bounded by a closed surface $S=\partial W$ oriented so that the unit normal points to the outside of the W.

If $F: R \wedge 3->R^{\wedge} 3$ is a vector field we have

$$
\iiint_{W} \nabla \cdot F d V=\iint_{S} F \cdot d \underline{S}
$$

5
What do closed surface and $\partial \mathrm{W}$ mean?
A dosed surface has empty boundary as and is bounded.
W is the region inside S.

Example. (Like most HW questions)
Find the flux of F across S where S is the unit sphere with outward pointing normal, and

$$
F(x, y, z)=\left(x+e^{\left.\left.\cos y \sqrt{1+z^{2}}, y+\frac{x}{1+z^{2}}, 2 z-3 y^{3}\right)\right) ~(x)}\right.
$$

Solution: Let W be the unit ball, so that $\partial W=S$. S has the correct onentation for Gauss's theorem

$$
\begin{aligned}
& \iint_{S}=\partial W \\
& \nabla \cdot F=d \underline{S}=\iiint_{W} \nabla \cdot F d V \\
& \nabla+1+2=4
\end{aligned}
$$

The integral is $4 \iiint_{W} d V=4 \cdot \frac{4 \pi}{3}$

$$
=\frac{16 \pi}{3} \quad \square
$$

$$
D i v F=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}}
$$

$$
" n\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right) \cdot\left(F_{1}, F_{2}, F_{3}\right)
$$

Comparison with Stokes' theorem.
Gauss

$$
\iint_{\partial W} F \cdot d S=\iiint_{W} \nabla \cdot F d V \quad \int_{\partial S} F \cdot d \underline{S}=\iint_{S} \nabla_{X} F \cdot d \underline{S}
$$

Dimension 2

Oneatation

Stokes

If $\operatorname{Div} F=0$ and S is closed we can deduce that $\iint_{-} S F \cdot d S=0$ in two ways.

1. Use Stokes. Because D.F $=0$, $F=\nabla \times G$ for some vector field G.
Stoke S' $\iint_{S} F \cdot d S=\iint_{S} \nabla_{x} G \cdot d S$

$$
=\int_{\partial S} G \cdot d \underline{s}=0 \text { became }
$$

∂S is empty.
2. Use Gauss: $\iint_{S} F \cdot d S=\iint_{\partial U} F \cdot d S$
Let W be the region
inside S.

$$
=\iiint_{W} \nabla \cdot F d V=0 .
$$

Example (closing a surface)
Let $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$

$$
\begin{aligned}
& \left(x+e^{\wedge} \cos (y) \sqrt{1+z^{\wedge} 2}, y+x /\left(1+z^{\wedge} 2\right)\right. \\
& \left.2 z-3 y^{\wedge} 3\right)
\end{aligned}
$$

Find the flux of F across the upper half of the unit sphere, oriented with an outward pointing normal.

Solution. Let W be the region between the upper hemisphere and the xy plane so $\partial W=S_{1} \cup S_{2}$

$$
\begin{aligned}
& \text { Gauss says } \\
& \iint_{\partial W} F \cdot d S=\iiint_{W} \nabla \cdot F d V \\
& \nabla \cdot F=1+1+2 \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
& \iiint_{W} 4 d V=4 \text { volume of } W=4 \frac{2 \pi}{3}=\frac{8 \pi}{3} \\
& =\iint_{S_{1}} F \cdot d S+\iint_{S_{2}} F \cdot d S \\
& \iint_{S_{1}} F \cdot d S=\iiint_{W} \nabla \cdot F d V-\iint_{S_{2}} F \cdot d S
\end{aligned}
$$

On S_{2} a unit normal is $(0,0,-1)$

$$
\begin{aligned}
& F \cdot(0,0,-1)=2 z-3 y^{3} \\
& \iint_{S_{2}} F \cdot d S=\int_{\text {disk in } x y-\text {-lane }} 2 z-3 y^{3} d x d y \\
& =0 \quad\left(z=0,3 y^{3}\right. \text { is an odd dinner } \\
& \iint_{S_{1}} F \cdot d S=\frac{8 \pi}{3} \cdot \square
\end{aligned}
$$

Example. (Solid regions with holes in them) Theorem 10 in the book:

The flux of $(x, y, z) / r \wedge 3$ across the surface of an 'elementary symmetric region' M is
4π if $(0,0,0)$ lies in M
0 if $(0,0,0)$ does not lie in M.

